Developing an Open-Source Multi-Agent Simulation

Environment for Connected Autonomous Vehicles

ER
IM

SAFETY RESEARCH USING SIMULATION
UNIVERSITY TRANSPORTATION CENTER

Dan Negrut, PhD Radu Serban, PhD
Professor Senior Scientist
Department of Mechanical Engineering Department of Mechanical Engineering

University of Wisconsin-Madison University of Wisconsin-Madison

Developing an Open-Source Multi-Agent Simulation Environment for Connected Autonomous

Vehicles
Dan Negrut, PhD Asher EImquist
Professor Graduate Research Assistant
Department of Mechanical Engineering Department of Mechanical Engineering
University of Wisconsin-Madison University of Wisconsin-Madison
https://orcid.org/0000-0003-1565-2784 https://orcid.org/0000-0002-0142-1865

Radu Serban, PhD

Senior Scientist

Department of Mechanical Engineering
University of Wisconsin-Madison
https://orcid.org/0000-0002-4219-905X

A Report on Research Sponsored by

SAFER-SIM University Transportation Center
Federal Grant No: 69A3551747131

May 2019

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and
the accuracy of the information presented herein. This document is disseminated in the interest of
information exchange. The report is funded, partially or entirely, by a grant from the U.S. Department
of Transportation’s University Transportation Centers Program. However, the U.S. Government assumes

no liability for the contents or use thereof.

Table of Contents

Table of Contents ii
List of Figures iii
Abstract e iv
1 Introduction 1
2 Synchrono: Foundational Simulation Elements 4
2.1 Agent Dynamics Simulation 4
2.2 Sensing Simulation 6
2.3 Communication Simulation 7
2.4 Virtual Environments Simulation 7
3 Synchrono: Multi-Agent Architecture 12
3.1 Network Communicationo 14
3.2 Message Handling 16
3.3 World Coherence oo 17
3.4 Client Synchronization 18
4 Demonstration of Technology 21
5 Conclusions e 24
5.1 Outcomes 24
5.2 Impacts 25
5.3 Future Work 25

Bibliography e 27

List of Figures

21

2.2
2.3
2.4

31

3.2

3.3
3.4
35

4.1

4.2

4.3

Chrono::Vehicle visualization of a wheeled vehicle with double wishbone suspensions and Pitman arm
Steering. . . . L L 5
DSRC MAP message for intersection of University Avenue and Park Street in Madison, WI. 8
Aerial view of virtual environment reconstructed from reality. (Courtesy of Continental Mapping) 10
Three-dimensional view of virtual environment showing reconstructed buildings and lanes.

(Courtesy of Continental Mapping) 11

Sychrono maintains a coherent environment across a client-server model. The simulation
includes a network and simulation layer with the dynamics and sensing taking place within
the simulation layer of each client. 12
Each Synchrono client maintains a simulation layer that is updated, in part, by the dynamics
server. The simulation can include controlled agents as well as static and dynamic world
elements that define the simulated scenario. L. 13
Message flow of the Synchrono, server which maintains a coherent world in time and space. 14
Synchrono client design shows the connection between the network and simulation layers. . 15
The Synchrono framework maintains a consistent simulation time whereby each client

connected to the server proceeds in a synchronized manner. 20

Top view of simulated intersection containing 30 connected autonomous vehicles. These
vehicles use communication and simulated sensor data to safely navigate the congested roadway. 21
Side view of simulated intersection containing 30 connected autonomous vehicles. Each
vehicle is simulated separately as a high-fidelity vehicle in Chrono but share the same virtual
environment and scenario through the Synchrono multi-agent simulation framework. 22
A single simulated vehicle driving along a virtual replica of Park St. in Madison, WI. The

virtual environment is courtesy of collaboration with Continental Mapping. 23

Abstract

This document contains an overview of the software infrastructure developed under the SAFER-SIM
project “Developing an Open Source Multi-Agent Simulation Environment for Connected Autonomous
Vehicles”. We provide a description of the four foundational simulation elements — agent dynamics,
sensing, communication, and virtual worlds — that anchor Synchrono, a simulation platform for connected
and autonomous agents. Synchrono is built around a “server-paradigm”, where two specialized servers
are in charge of maintaining time, space, and communication coherence. The first server, called the
Synchrono Dynamics Server, maintains coherence in space and time for all agents participating in a
scenario. This would enable the dynamics of a collection of Synchrono clients to advance their evolution
in time in a coherent fashion. Moreover, for sensing purposes, the clients will be in a position to sense
each other, owing to the space coherence attribute of a scenario enabled by the dynamics server. The
Synchrono Communication Server establishes a virtualization layer that provides a “communication
space” in which messages are sent and received in a time coherent fashion. Synchrono is demonstrated in
conjunction with a 30-vehicle simulation that builds off a busy Madison intersection between University
Avenue and Park Street. The simulated scenario touches on several aspects of Synchrono, such as vehicle

dynamics simulation, agent communication, sensor simulation, and synthetic virtual worlds.

1. Introduction
The purpose of this SAFER-SIM project was to establish the first version of an open-source software
infrastructure used to test the behavior of autonomous vehicles through computer simulation. This
software infrastructure is called Synchrono. As a software platform that allows rapid, low-cost, and
risk-free testing of novel designs, methods, and software components, Synchrono seeks to accelerate and
democratize research and development activities in the field of autonomous navigation. Synchrono is
(a) heterogeneous and multi-agent, in that it supports the simulation of heterogeneous traffic scenarios
involving conventional, assisted, and autonomous vehicles; (b) open platform, as it allows any client that
subscribes to a standard application programming interface (API) to remotely plug into the emulator
and engage in multi-participant traffic scenarios that bring together autonomous agents from different
solution providers; (c) vehicle-to-vehicle (V2V) communication emulation ready, owing to its ability
to simulate the V2V data exchange enabled in real-world scenarios by ad-hoc dedicated short-range
communication (DSRC) protocols; and (d) open-source, as the software infrastructure will be available
under a BSD3 license in a public repository for unrestricted use and redistribution.

When fully implemented, Synchrono will provide three immediate benefits. First, it will serve as
a development platform for algorithms that seek to establish path planning policies for autonomous
vehicles operating in heterogeneous traffic scenarios; i.e., it enables the rapid and safe testing of “work in
progress” piloting computer programs (PCPs). Second, it will enable auditing of existing path planning
policies by exposing connected and/or autonomous vehicles to scenarios that would be costly, time
consuming, and/or dangerous to consider in real-world testing. Third, Synchrono will provide a scalable,
high-throughput, virtual proving ground that exposes heterogeneous traffic complexity that would not
otherwise emerge in actual single-vehicle testing conducted in controlled environments.

In order to facilitate a better understanding of the design principles that anchor Synchrono and the
implementation details that glue this infrastructure together, we provide next a glossary of some of the
more important terms/concepts used in this project report. In the list below, the terms in italics are part

of this short glossary.

agent An autonomous entity, e.g., a car, robot, etc., whose evolution is not pre-canned but determined

by a PCP at run-time as a result of mutual interactions with other agents and the environment.

Its state changes in time according to the laws of physics and its dynamics is predicted through a

Chrono simulation.

Agent Control Unit/ACU A Synchrono-internal applet that controls the flow of information necessary

to emulate the evolution of an agent.

Chrono An open-source, multi-physics simulation engine used in Synchrono to predict the time evolution

of the agents and the Virtual World Dynamic Elements.

Chrono System An instance of a Chrono simulation. It represents one instance of the simulation
engine that produces the time evolution of one or multiple agents and other vwDynamicElements
operating within a virtual world. One Synchrono experiment can draw on one or multiple Chrono

systems. One Synchrono client employs exactly one Chrono system.

Communication Server A Synchrono server that facilitates the coordination of X2X Communication

and that enforces time coherence. There is one such server per Synchrono emulation.

Dynamics Server The Synchrono-internal service that coordinates with VW-element control units and
ACUs to maintain a time- and space-coherent simulation experience across all Synchrono clients.

There is one such server per Synchrono emulation.

Google Protocol Buffers/protobuf A language-neutral library for serializing structured data. Its im-

plementation prioritizes speed over readability.

heartbeat A constant interval of simulation time used to maintain synchronization between Synchrono

Clients.

Piloting Control Program/PCP The “brain” of an agent. Based, on the one hand, on sensory input
and localization and mapping information; and, on the other hand, on control algorithms, it

produces a set of inputs that dictate the evolution of an agent; i.e., it pilots the agent.

state cache A class for storing external agent state updates and synchronizing local simulation time

with external simulation times.

Synchrono A framework for the simulation of agents in a virtual world that is distributed across a

network of participating computers.

Synchrono client A process that runs a Chrono system for the purpose of simulating the evolution of

one or more agents and elements of the virtual world.

Transmission Control Protocol/TCP An Internet protocol that provides an error-corrected and ordered

stream of bytes between two processes connected over a network.

User Datagram Protocol/UDP A minimal, packet-based Internet protocol. Uses checksum-based

error detection, but does not guarantee packet ordering or delivery.
Virtual World/VW The virtual environment in which the activities of all agents take place.

Virtual World Dynamic Element In the simulated virtual environment, a component whose state
changes in time and whose time evolution is simulated by Chrono. For instance, the terrain on
which an autonomous vehicle moves, smoke drifting around a building, etc. The difference between

an agent and a Virtual World Dynamic Element is that the former has a PCP.

Virtual World State Element In the simulated virtual environment, a component that has state
associated with it. This state is not controlled by the laws of physics, but rather it's set by a
control program or an agent. Examples: a traffic light, a pedestrian avatar that follows a predefined

(established pre-run-time) motion, etc.

Virtual World Static Element In the simulated virtual environment, a component that does not change

in time. For instance, a building.

X2X Applet A Synchrono applet supporting the simulation of X2X Communication in the Synchrono

virtual world. This communication involves both agents and elements of the VW.

X2X Communication Any wireless communication that enables the agent-to-agent, agent-to-VW
element, etc., exchange of information. The protocol that enables the communication is irrelevant.

Examples of possible protocols: DSRC, 5G, blinking of lights, etc.

2. Synchrono: Foundational Simulation Elements

Simulation of connected autonomous vehicles requires the simulation of four primary components:
dynamics, sensing, communication, and the virtual environment. The simulation of dynamics plays
a role in constraining the agent or vehicle to reality, and propagating the desired controls into the
vehicle to model the vehicle's time evolution. Simulating the sensing allows the object-detection and
object-recognition algorithms to be tested in the loop with path planning and following, resulting in an
end-to-end test of the vehicle control stack within the simulation. Simulated communication allows the
vehicles to make use of the remaining capabilities that a physical connected vehicle would leverage. The
virtual environment is coherent through the other three simulation components and is critical in dictating

the test scenarios.

2.1 Agent Dynamics Simulation

Physics modeling and simulation support for Synchrono infrastructure is provided through the open-source
multi-physics package Chrono [1, 2]. The core functionality of Chrono provides support for the modeling,
simulation, and visualization of multibody systems, with additional capabilities offered through optional
modules. These modules provide support for additional classes of problems (e.g., finite element analysis
and fluid-solid interaction), support for modeling and simulation of specialized systems (such as ground
vehicles and granular dynamics problems), or provide specialized parallel computing support (multi-core,
GPU, and distributed) for large-scale simulations.

Built as a Chrono extension module, Chrono::Vehicle [3] is a C++ middleware library focused on
the modeling, simulation, and visualization of ground vehicles. Chrono::Vehicle provides a collection of
templates for various topologies of both wheeled and tracked vehicle subsystems, as well as support for
modeling of rigid, flexible, and granular terrain, support for closed-loop and interactive driver models,
and run-time and off-line visualization of simulation results.

Modeling of vehicle systems is done in a modular fashion, with a vehicle defined as an assembly
of instances of various subsystems (suspension, steering, driveline, etc.), as illustrated in Figure 2.1.
Flexibility in modeling is provided by adopting a template-based design. In Chrono::Vehicle, templates are

parameterized models that define a particular implementation of a vehicle subsystem. As such, a template

defines the basic modeling elements (bodies, joints, force elements), imposes the subsystem topology,
prescribes the design parameters, and implements the common functionality for a given type of subsystem

(e.g., suspension) particularized to a specific template (e.g., double wishbone). Modeling of wheeled

Figure 2.1: Chrono::Vehicle visualization of a wheeled vehicle with double wishbone suspensions and Pitman arm
steering.

vehicles can leverage a comprehensive collection of suspension templates (double wishbone, multi-link,
solid-axle, McPhearson strut, semi-trailing arm, etc.), steering templates (Pitman arm, rack-pinion), as
well as templates for drivelines, anti-roll bars, wheels, and brakes. Chrono::Vehicle offers a variety of
tire models and associated templates, ranging from rigid tires (with either a cylindrical or mesh contact
shape), to empirical and semi-empirical models (such as Pacjeka, Fiala, and TMeasy), to fully deformable
tires modeled with finite elements (which allow for detailed specification of tire geometry and material
properties, as well as specification of flexible 3D tire tread patterns).

Various approaches for terrain modeling are supported. The parameterized template for rigid terrain
allows specification of flat profiles, arbitrary geometry specified as a Wavefront format mesh object,
or profiles constructed from height-field information provided as gray images. We provide support for
deformable terrain at various degrees of accuracy and computational efficiency. An expeditious option is
given by the Chrono::Vehicle extension of the Soil Contact Model (SCM) technique, which implements
simple terramechanics based on the Bekker-Wong formulas. At the other extreme, the granular terrain
template in Chrono::Vehicle leverages the granular dynamics support in Chrono to allow simulations of
ground vehicles over granular terrain using either a compliant, or a rigid-body approach to the frictional

contact problem [1]. An alternative high-fidelity approach to modeling deformable terrain is provided by

templates for specifying finite element analysis (FEA) terrain patches, leveraging the support provided in
the Chrono::FEA module.

For additional flexibility and to facilitate inclusion in larger simulation frameworks, Chrono::Vehicle
allows formally separating various systems (the vehicle itself, powertrain, tires, terrain, driver) and
provides the inter-system communication API for a co-simulation framework based on force-displacement

couplings. For consistency, these systems are themselves templatized:

vehicle: the vehicle template is a collection of references to instantiations of templates for its constitutive

subsystems; specific templates are provided for wheeled and tracked vehicles;

powertrain: shaft-based template using an engine model based on speed-torque curves, torque converter
based on capacity factor and torque ratio curves, and transmission parameterized by an arbitrary

number of forward gear ratios and a single reverse gear ratio;

driver: interactive driver model (with user inputs from keyboard for real-time simulation), file-based
driver model (interpolated driver inputs as functions of time), closed-loop driver models (using

PID controllers for path following, speed control, etc.).

2.2 Sensing Simulation

Along with simulating vehicle dynamic behavior, simulating the sensing that is fed into the vehicle’s
PCP is crucial to understand the overall autonomous behavior of the target vehicle. The development of
the Synchrono sensor module is based on the importance of relaying realistic sensor data back to the
control algorithm such that decisions made in the Synchrono virtual environment closely reflect those in
a physical, real-world setup. To this end, sensor data generated in the virtual environment should be as
similar as possible to its physical world equivalent. For example, the data generated from a virtual Light
Detection and Ranging (LiDAR) as it sees a wet road with worn lane markings should encompass the
appropriate distance, noise, and intensity for the road and material conditions. Highly realistic virtual
sensor data allows a higher confidence that the decisions made by the control algorithm in simulation
will be transferable to a real-world setup. The framework currently supports global position system
(GPS) and inertial measurement unit (IMU) sensors, which include stochastic noise inherent in the data

acquisition process. The noise levels are parameters in the simulation, with the virtual GPS additionally

accounting for higher noise levels when satellite coverage is partially obstructed. Preliminary support for
camera and LiDAR are provided through an open-source rendering engine, with higher-fidelity camera,

LiDAR, and radar models the subject of further research and development.

2.3 Communication Simulation

Communication plays a key role in connected autonomous vehicles as it alleviates some of the reliance
on sensing and object recognition. For example, a traffic light can broadcast its status to nearby
vehicles rather than relying on the vehicles to consistently detect the color of the signal. This form of
communication is known as vehicle-to-infrastructure (V2l) communication, but can be extrapolated to
V2V or vehicle-to-anything (V2X) whereby a vehicle can listen and broadcast messages ranging from
safety messages to traffic signal messages.

One leading protocol for V2X communication is DSRC following the SAE J2735 standard. This
standard dictates the format and data for messages such as Basic Safety Message (BSM) for V2V and
MAP and Signal Phase and Timing (SPaT) messages used in V2I that specify the relevant information
from a traffic-light-controlled intersection. SPaT defines the current signal for all lanes in the intersection
as well as the time until the signal will change. The MAP message specifies lane connections in and out
of the intersection to control the flow of vehicles. An example MAP message is shown in Figure 2.2.

These messages can be generated from real-world maps using an online MAP and SPaT message
creation tool [4]. Because this simulation framework can parse and send DSRC-compliant messages, real
intersections can be involved in highly configurable scenarios where communication protocols, data loss,
or altered DSRC messages can be changed to understand their effect on the behavior and interaction

amongst connected autonomous vehicles.

2.4 Virtual Environments Simulation

The overarching virtual environment in which a simulation takes place has a significant effect on the
simulation of both dynamics and sensing, and in some cases even communication. For this reason, it
is essential that the virtual environment be realistic and representative of a real environment in which

the scenarios of interest would occur. Real environments are littered with strange occurrences, unique

Figure 2.2: DSRC MAP message for intersection of University Avenue and Park Street in Madison, WI.

or inefficient markings, and can be highly unstructured. The virtual environment consists, broadly, of
three types of objects: 1) controlled dynamic objects, 2) passive dynamic objects, and 3) static scene.
Category (1) covers objects that are controlled and can react and exhibit interesting or unpredictable
behavior as a result of decisions made by a vehicle. This would include animals, humans, traffic lights,
bicyclists, etc. Type (2) includes those objects that can move through the scene or be pushed through
the scene but will not react to any decisions. A plastic bag floating in the wind, construction cones,
rain, and snow are all examples of dynamic objects. The last type, (3), is the static scene that does not
change through the simulation and includes buildings, roads, and signs. Objects in categories 1 and 2 are
a primary basis for understanding the reactionary behavior of an autonomous vehicle in highly dynamic
and adverse scenarios and are not yet fully supported in this framework.

Although the static scene is not changing through the simulation, it still plays a critical role in the
behavior of a vehicle. Each real-world intersection is unique with its own lane markings, road textures,
street signs, and surrounding buildings. In an effort to generate a virtual environment that duplicates this
uniqueness, a virtual replica was created of a section of Park St. in Madison, WI. This virtual replica

was provided through a collaboration with Continental Mapping [5]. Figure 2.3 shows an aerial view of

this virtual environment. A three-dimensional view of an intersection within this environment is shown
in Figure 2.4. While still a work in progress, this process would allow the simulation of hundreds of

scenarios in a replicated intersection where data could be compared to real-world experiments.

10

Figure 2.3: Aerial view of virtual environment reconstructed from reality. (Courtesy of Continental
Mapping)

11

Figure 2.4: Three-dimensional view of virtual environment showing reconstructed buildings and lanes.
(Courtesy of Continental Mapping)

12

3. Synchrono: Multi-Agent Architecture

Synchrono aims to create a framework for the simulation of agents in a virtual world that is distributed
across a network of participating computers. This goal is achieved by having client simulations connect
to a central server, which facilitates the distribution of state information of each agent to all other clients.
The server maintains the state of the virtual world and handles clients’ requests for updates. Network
communication is done with the Boost.Asio library, making use of a combination of Transmission Control
Protocol (TCP) and User Datagram Protocol (UDP). Serialization of agent state information is done
using protocol buffers [6]. Figure 3.1 provides a visualization of the client and server networking in
the context of Synchrono as a whole. The agent control unit (ACU) interfaces with every component
of the client, as well as with the server. It serves as the “connective tissue” that holds two clients
together by maintaining the correct control-flow and timing between components. Dynamics and sensing
simulation of all local agents is done in a system, with agent input parameters being provided by the
ACU, and output eventually being fed back into the PCP as sensor data. The DSRC agent connects the
agents through direct wireless communication, allowing them to share information such as BSM with

one another. This connection is facilitated by the DSRC server, which routes messages between DSRC

age nts.
- N N I : ; \
Agent The Virtualization Layer The Simulation Layer
Piloin (Coordination/Synchronization & (Chrono Services: Dynamics &
f,‘;’é',’,} Communication Services) Sensing Simulation)
(PCP)
X2X, State, | [Agent Commands, s%"‘""’"" VW Static
Sensor Data | [X2X Data 2SOl Element
Agent Synchrono
Conney State Updates DVS':;";“ State Updates.
Communic. vax (
Messages Messages. ()
= . .
Comm. X2X Messages X2X Messages Comm.
Applet Applet
N J N J

Figure 3.1: Sychrono maintains a coherent environment across a client-server model. The simulation
includes a network and simulation layer with the dynamics and sensing taking place within the simulation
layer of each client.

The Synchrono multi-agent server consists of three concurrent components:

= Network communication, which is carried out by the Sending and Receiving threads shown in

Figure 3.3.

13

. .)
The Simulation Layer
(Chrono Services: Dynamics &
Sensing Simulation)
(. . .
L The Virtualization Layer
Piloting (Coordination/Synchronization &
Fﬁﬁ;‘,ﬂ Communication Services)
(PCP)
X2X, State, Agent Commands, Synchrono VW Static
Sensor Data X2X Data Daemon Element
Agent Synchrono VW Elem.
c%’:‘ti';OI State Updates DyS:?'v"::s State Updates c%’:‘ti';OI
Communic. V2Xx L
Messages Messages
v,
X2X X2X
Comm. X2X Messages X2X Messages Comm.
Applet Applet
1\ ,

Figure 3.2: Each Synchrono client maintains a simulation layer that is updated, in part, by the dynamics
server. The simulation can include controlled agents as well as static and dynamic world elements that
define the simulated scenario.

» Message processing, which is done by a collection of threads labeled in Figure 3.3, and makes up

the bulk of the multi-agent server’s activities.
» Agent-state storage, which is done by the World Update Thread in Figure 3.3.

Network communication is done using the network handler, which will be discussed in greater detail later,
and allows for the asynchronous sending and receiving of messages. The multi-agent server is designed
for any number of threads to be assigned to the task of processing messages, giving it the ability to scale
better as the number of available cores increases. After the messages have been processed, they are
committed to the World Map as updated agent states by one thread in order to maintain thread-safety.

The Synchrono client contains at least two concurrent components:
= The main simulation loop, seen in Figure 3.4.

= The network communication threads, which are the Sending and Receiving threads in Figure 3.4.

14

Receiving
Thread

Message
Incoming Processsing World
Incoming Packets Packet Threads Update

Queue Thread

Network Interface,
Pop
Outgoing
Outgoing Packets Packet

Sending Pop Queue Push
Thread

~

Network Handler

World Map

Figure 3.3: Message flow of the Synchrono, server which maintains a coherent world in time and space.

The main simulation loop is handled by Chrono, or any other physics simulation engine, and the
network communication is once again handled by an instance of the network handler. In between these
two components lies an additional and optional component: the state cache. This class exposes to
its user the current states of external agents and handles all network handler calls internally. Before
the simulation loop starts, a TCP connection is set up with the server to register a connection number
with the server and receive any simulation initialization information, such as weather or agent starting
position. Then, in the simulation loop, all agent updates are handed off to the network handler to be
sent to the server over UDP. In other words, server messages representing the current states of all agents
belonging to the client are created and packed into a buffer to be sent to the server. At this stage, the
loop should also check the network handler for any new messages from the server, and update the states

of all external agent representations.

3.1 Network Communication

The server uses a combination of TCP and UDP for network communication. The server accepts
connections of new clients on a TCP socket. Since TCP guarantees no packet loss, it can be used to
reliably exchange essential information between the client and the server. Once connected, the client

is expected to send a connection request message. If the server cannot accept the connection, then a

15

Receiving Thread

Incoming Packets

Main Simulation
Thread

Update Call.

Incoming
Message
Queue

Outgoing Packets

|
Sending Thread

Outgoing
Message
Queue

Resume

Network Handler

N J
e

State Cache

Figure 3.4: Synchrono client design shows the connection between the network and simulation layers.

decline message is sent and the socket is closed. If the server is capable of accepting the connection, it
will respond with a message indicating that it has accepted the connection, and then send the client its
connection number. After the client's connection number has been successfully established, the client
and the server are free to continue to communicate over TCP. Information sent can include virtual world
data, agent specifications, starting location, etc. Currently, the only information sent to the client is the
current simulation time and the heartbeat size, which will be discussed in greater detail later.

After all TCP communication has been concluded, the connection is closed and all further com-
munication is done over UDP. UDP is less reliable than TCP, as it does not implement any internal
packet-loss countermeasures, such as acknowledgment messages. The benefit of this is that the sending
and receiving of messages is more efficient. Moreover, since a more up-to-date packet would be more

optimal than a re-sent stale packet, the use of UDP is able to further expedite communication. The

16

client is expected to use UDP for all updates of agent states. The server is capable of sending three

different kinds of updates to any client:

= Individual agent state updates. This can be used when agent states are updated very rarely, and

can be most efficiently sent to clients individually.

= State updates of the entire virtual world. This is most useful when all agents are physically packed
closely together in the virtual world, necessitating for each agent to efficiently receive updates

about all of its peers.

= State updates of any subset of the virtual world. When agents are more physically spread out, it is
useful to minimize the amount of information sent by only sending updates of other agents within

the immediate vicinity of a receiving agent.

3.2 Message Handling

The message handling threads are used to parse incoming messages, evaluate their sanity, and submit
lambda expressions that update the states of agents to a queue to be processed in serial. While parsing
is done within the handler class, it is still done by the handler threads in order to keep the network
communication threads from being overused.

When parsing on the server side, the “any” message provided by protocol buffers is used to prevent
unnecessary parsing of agent states. Since the server is concerned only with identifying the sending client,
the precise agent corresponding to a message, the system time-stamp at the time of sending, and the
simulation time of the message, there is no need to parse any information regarding the agent’s internal
state. In order to prevent this, an outer “AgentMessage” format is used to store the meta-data relevant
to the server, along with the still-serialized state of the agent in an “any” message. This also allows the
internal state to be of any format, which can be written and specified by users.

Once a message is parsed, the handler threads check that the message is of the same type as the
preexisting agent state, and that the update has a newer time-stamp. These checks are done using
protocol buffers’ introspective functions. These functions essentially allow the handler threads to handle

any protocol buffer message without needing to know its type, so long as the message has certain fields,

17

like time-stamp and identification number. Once these checks are done, the message is handed off to

the world update thread.

3.3 World Coherence

The World Map stores all information about the server's connected clients and their associated agents.
Upon the initial client connection, the connection number of the new client is added to a set of numbers
in the virtual world. After the switch to UDP occurs, the connection number of incoming messages
is compared with agents of this set. If an incoming message has a connection number in this set, the
connection number is removed from the set, and an insertion is made to a mapping of connection
numbers to client UDP endpoint information. This process is what completes the “handshake” from
TCP to UDP. At this point, the client is considered to be registered in the virtual world. If further agent
state updates or new agents are sent, this registration is verified by checking for its entry in the endpoint
map. If a message is received that does not have a corresponding entry in either the connection number
set or the endpoint map, then it is thrown out, thereby enforcing the TCP-to-UDP handshake process.

The current states of the actual agents are stored in the form of a mapping from connection number
and identification number to protocol buffer message. For this reason, any agent is uniquely identified
by the combination of its connection number and identification number. After a message has been
verified to correspond to a valid connection number and endpoint, the user of the World Map (a message
processing thread) is given a handle to an endpoint-profile structure, which stores the receiving endpoint
of a client, as well as the number of agents associated with that client, and iterators to the first and last
agents of the client in the agent map. The endpoint-profile enables the user to modify the agents within
the World Map associated with that profile’s corresponding client. In order for the agent to be updated
in a thread-safe manner, the message handler threads push a lambda expression to a queue, which upon
being popped is executed by the world-updating thread.

Additionally, the World Map has another thread that scans all connected agent states for sanity. If a
client has not sent updates to an agent recently enough (since a few seconds prior to the check), then
the server will “shoot down" that agent, and it will not be seen by other agents in the virtual world. If

that client begins sending updates again, then it may be reintroduced to the World Map.

18

3.4 Client Synchronization

While its interface is simply a set of agent external states and a function to update an internal agent
state, the primary function of the state cache is the synchronization of simulations between participating
clients for the purpose of maintaining time coherence within a Synchrono emulation scenario. Time
coherence is important since it allows all agents to perceive the same universal time. Unless special
precautions are taken, an agent whose simulation is trivial would potentially advance quickly into the
future, which leads to a “time-gap” between the current time that the simulation-light agent perceives,
and the time reached by another agent whose simulation requires longer wall time.

Figure 3.5 shows an illustration of the synchronization mechanism that the state cache implements.
When the handler is initialized, the heartbeat size is used by the state cache to synchronize clients. At
intervals of time equal to the size of the heartbeat, the state cache periodically checks the simulation
times of external agents. If there is a simulation time that is earlier than two heartbeat-lengths before
the local simulation time, then the cache blocks the simulation until a sufficiently up-to-date message
for that agent arrives. Alternatively, the server may perform a “shut-down,” or removal, of the agent
from the virtual world. In this case, the client simulation will receive a “shut-down” message in place of
a normal update, and will remove the representation of that agent from the local simulation.

A schematic of how the UDP-based Synchrono dynamics server maintains time coherence is provided
in Figure 3.5(C). The simplified depictions in (A) and (B) come in handy to explain the philosophy of the
mult-agent server (M-AS). In (A), we show two agents (#i and #j5), which advance their state in time
at their own pace. For instance, Agent #i can be a very simple model of a vehicle, while Agent #j is a
highly accurate representation of a vehicle with complex tire models. There is a Chrono solver advancing
the state of Agent #i forward in time; a second Chrono solver advances the state of Agent #j. This is
shown in (A). Given that Agent #i is quick in advancing its state from time ¢, to ¢!, this agent could
move forward in simulation time, leaving Agent #; behind. Because sensing and communication take
place between these two agents, they need to move forward in time in an approximately coordinated
fashion. In (B), we illustrate the concepts of heartbeat, which in this example has a size of 0.005 seconds
(200 Hz), and synchronization post, which is used to keep the agents approximately in sync. To explain

why rough synchronization is needed, imagine that Agent #: is LIDAR-sensing Agent #7j. Then, the

19

former needs to place the latter in Agent #i's environment to sense its presence. To this end, Agent #j
information needs to be UDP-conveyed to Agent #i. If Agent #i reaches a synchro<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>